EP-GIG Priors and Applications in Bayesian Sparse Learning
نویسندگان
چکیده
In this paper we propose a novel framework for the construction of sparsity-inducing priors. In particular, we define such priors as a mixture of exponential power distributions with a generalized inverse Gaussian density (EP-GIG). EP-GIG is a variant of generalized hyperbolic distributions, and the special cases include Gaussian scale mixtures and Laplace scale mixtures. Furthermore, Laplace scale mixtures can subserve a Bayesian framework for sparse learning with nonconvex penalization. The densities of EP-GIG can be explicitly expressed. Moreover, the corresponding posterior distribution also follows a generalized inverse Gaussian distribution. We exploit these properties to develop EM algorithms for sparse empirical Bayesian learning. We also show that these algorithms bear an interesting resemblance to iteratively reweighted l2 or l1 methods. Finally, we present two extensions for grouped variable selection and logistic regression.
منابع مشابه
Priors on the Variance in Sparse Bayesian Learning; the demi-Bayesian Lasso
We explore the use of proper priors for variance parameters of certain sparse Bayesian regression models. This leads to a connection between sparse Bayesian learning (SBL) models (Tipping, 2001) and the recently proposed Bayesian Lasso (Park and Casella, 2008). We outline simple modifications of existing algorithms to solve this new variant which essentially uses type-II maximum likelihood to f...
متن کاملInference algorithms and learning theory for Bayesian sparse factor analysis
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as wel...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملGeneralized spike-and-slab priors for Bayesian group feature selection using expectation propagation
We describe a Bayesian method for group feature selection in linear regression problems. The method is based on a generalized version of the standard spike-and-slab prior distribution which is often used for individual feature selection. Exact Bayesian inference under the prior considered is infeasible for typical regression problems. However, approximate inference can be carried out efficientl...
متن کاملHandling Sparsity via the Horseshoe
This paper presents a general, fully Bayesian framework for sparse supervised-learning problems based on the horseshoe prior. The horseshoe prior is a member of the family of multivariate scale mixtures of normals, and is therefore closely related to widely used approaches for sparse Bayesian learning, including, among others, Laplacian priors (e.g. the LASSO) and Student-t priors (e.g. the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 13 شماره
صفحات -
تاریخ انتشار 2012